ier
Vorbemerkung
Quadratura circuli apud Gerardum Mercatorem 
Eine Konjektur 

Die Quadratur des Kreises bei Gerhard Mercator

Gerhard Mercators erster Duisburger Biograph, Walter Ghim, berichtet uns davon, daß er mehrfach von Gerhard Mercator gehört habe, daß der Entwurf der Weltkarte AD USUM NAVIGANTIUM von 1569 in einer von ihm vermuteten engen Beziehung zum sogenannten Problem der Quadratur des Kreises stehe: allein es fehle ihm der Beweis (?des Zusammenhanges beider Probleme, ?für die Quadratur). 

... inventione nova et convenientissima sphaeram in plano extendendo, quae sic quadraturae circuli respondet, ut nihil deesse videatur, praeterquam quod demonstratione careat, ut ex illius ore aliquoties audivit ... 
... eine neue und außerordentlich entsprechende Erfindung, die Kugel in die Ebene abzuwickeln, welche derart der Quadratur des Kreises entspricht, daß es nur eines Beweises [für diese Tatsache] ermangelt, wie ich es mehrfach aus seinem Munde vernommen habe ...
Da der mathematische Autodidakt Gerhard Mercator aber den Beweis für diese Entsprechung nicht gefunden hat, ist es bis heute bei dieser Andeutung geblieben. Der arme Ghim mußte sich sogar schelten lassen, Gerhard Mercators betreffende Äußerungen überhaupt nicht verstanden zu haben. 

Noch 1962 sprach Bruno Kyewski davon, daß man Walter Ghim gewiß nicht die Kompetenz zusprechen könne, Gerhard Mercator in dieser Sache richtig verstanden zu haben: zu weit lägen beide Probleme - mathematisch betrachtet - auseinander, zu wenig habe Ghim wohl von der diesbezüglichen Mathematik verstanden. 

Inzwischen - d.h. seit 1992 - bin ich mir im klaren darüber, daß eine derartige "Schelte" nur unter der
Voraussetzung möglich war / ist, daß beide Probleme nicht mit den Augen Gerhard Mercators, sondern mit dem gelehrten Blick auf die nach Gerhard Mercator folgende Problemgeschichte beider Aufgaben gesehen werden - und so scheint es zuerst einmal keine Zusammenhänge zu geben. 

Da Gerhard Mercator ?nur mit der Bruchrechnung umgegangen ist - selbst seine Feldvermessungsarbeiten benötigten nicht mehr - , durfte / mußte (s)ein Ansatz nur mit deren Methoden Umgang pflegen: Ein solcher Umgang scheint aber auf den ersten Blick den mathematischen "Sachen" beider Aufgaben zugleich nicht angemessen zu sein.

Als ich 1992 begann, mich für die Entwurfsmethode der Karte von 1569 zu interessieren, habe ich den Schwerpunkt meiner Überlegungen zuerst einmal auf die Rekonstruktion der Weltkarte gelegt. 

Erst nach der Herausgabe der Karte wie meiner Untersuchungsergebnisse im Jahre 1994 beschäftigte mich die Vermutung Gerhard Mercators: 

Wie wäre es, wenn es gelänge, die Entwurfsfigur der Weltkarte in einem Methodenwechsel mit arithmetischen statt mit geometrischen Augen - sit venia verbo - zu sehen? 
In der Tat: Die Übereinstimmung  -  im gemeinsamen Nutzen der Konstruktionsfigur der "loxodromischen Dreiecke" von 1569 gelegen - brachte mich auf die Spur der / einer Lösung des Quadraturenrätsels mit den Mitteln der Bruchrechnung - und nur den Mitteln der Bruchrechnung. 
  • Die Betonung "und nur den Mitteln der Bruchrechnung" ist insofern bedeutsam, als wir davon ausgehen müssen, daß dem mathematischen Autodidakten Gerhard Mercator keine weitergehenderen mathematischen Mittel ?insgesamt zur Verfügung gestanden haben. 
Obgleich nun die Lösung schon 1996 ausgearbeitet war, Düsseldorf, den 5.März 1996, verschob sich ihre Veröffentlichung bis in den Herbst des Jahres 1998: Dem Redakteur der PRAXIS DER MATHEMATIK, dem ich für den Mut der Veröffentlichung überhaupt herzlich danke, standen in zwei Jahren einfach keine Seiten für meinen Aufsatz zur Verfügung. 

Ich gebe den Aufsatz daher hier als Hypertext heraus.

Die immer wieder angekündigten Wartezeiten hinsichtlich der Veröffentlichung von - doch vielleicht allgemein interesssierenden - Ergebnissen in Sachen "GM" haben mich übrigens - und schließlich -  dazu bestimmt, auf einer homepage im www zu veröffentlichen.